Электротехнологии, аккумуляторы и батареи
  • Introduction
  • Введение
  • Помощь
    • С чего начать
    • Частые вопросы
    • Как выбрать батареи/аккумуляторы
    • Как выбрать зарядное устройство
    • Техническая библиотека
    • Книги
    • Стандарты
    • Законы
    • Глоссарий
    • Таблица переводов
  • Электрическая энергия
    • Источники энергии
      • Энергоресурсы
    • Потребность в энергии
      • Энергетическая эффективность
    • Преобразование энергии
      • Паровые турбины
      • Энергия газовых турбин
      • Энергия поршневых двигателей
      • Энергия двигателей Стирлинга
    • Электростанции на ископаемом топливе
      • Энергия из угля
      • Ядерная энергия
        • Практика
        • Теория
    • Возобновляемая энергия
      • Гидроэнергетика
      • Ветроэнергетика
      • Солнечная энергетика
      • Местные (локальные) генераторы
      • Геотермальная энергия
      • Биотопливо
      • Водородное топливо
      • Химические источники энергии
      • Термоэлектрические генераторы (Зеебека)
      • Термоэлектрические генераторы (AMTEC)
      • МГД генераторы
      • Гибридные системы генерирования энергии
      • Углеродный след
  • Хранение энергии
    • Химические элементы
      • Щелочные элементы
      • Свинцово-кислотные элементы
      • Марганцево-цинковые элементы
      • Никель-Кадмиевые элементы
      • Никель-Водородные элементы
      • Железо-Никелевые элементы (NiFe)
      • Никель-металл-гидридные элементы
      • Никель-Цинковые элементы
      • Литиевые батарейки
      • Литиевые аккумуляторы
      • Батареи Redox
      • Серебряно-цинковые (серебряно-оксидные) батареи
      • Батареи Zebra
      • Воздушно-Цинковые элементы
      • Другие виды
      • Сравнение
    • Типы батарей
      • Первичные (не перезаряжаемые) элементы
      • Вторичные элементы (аккумуляторы)
      • Батареи высокой мощности
      • Тяговые батареи
      • Маломощные батареи
      • Высокотемпературные батареи
        • Термальные батареи
      • Резервные батареи
      • Водные (водоактивируемые) батареи
      • Проточные батареи
      • Топливные ячейки
        • Сравнение топливных ячеек
      • Солнечные ячейки
        • Ячейки Грацеля
      • Конденсаторы и Суперконденсаторы
      • Батареи переменного тока
      • Альтернативные хранилища энергии
      • Самодельные батареи
      • Характеристики производительности
      • Срок эксплуатации
        • Годность и гарантии
      • Почему батареи перестают работать
        • Отказы литиевых батарей
      • Системы управления батареями
        • Управление температурой
        • Состояние заряда
        • Состояние «здоровья»
        • Балансировка ячеек
        • Аутентификация и идентификация
        • Системы взаимодействия (коммуникации)
        • Менеджмент требований
      • Безопасность
        • Методы защиты
          • Батареи высокого напряжения
      • Пользовательские инструкции
      • Перевозка
      • Безопасные материалы
      • Переработка
        • Тестирование
        • Хранение батарей
        • Конструкция ячеек
        • Новые конструкции и компоненты
        • Производство батарей
          • Корпусы
      • Преимущества собственных корпусов
        • Непрерывное энергоснабжение
        • Зарядные устройства
          • Инфраструктура зарядки электромобилей
        • Применение батарей
        • Передача энергии электротранспорта в сеть
        • Программная конфигурация батарей
  • Применение
    • Электропривод (Основы)
      • Двигатели переменного тока
      • Двигатели постоянного тока
      • Бесщёточные двигатели
      • Двигатели специального назначения
      • Управление электродвигателями
      • Генераторы
      • Полупроводники
      • Тепловые двигатели
        • Паровые турбины
        • Газовые турбины
        • Поршневые двигатели
        • Двигатели Стирлинга
    • Электромагнитное излучение
    • Инженерная гармония
  • История
    • Линия изобретений
    • История технологий
    • Открытие элементов
    • Список гальванических элементов
    • Зал славы
  • Об авторе
Powered by GitBook
On this page
  • Принцип работы щелочно-металлического термоэлектрического преобразователя
  • Эффективность

Was this helpful?

  1. Электрическая энергия
  2. Возобновляемая энергия

Термоэлектрические генераторы (AMTEC)

PreviousТермоэлектрические генераторы (Зеебека)NextМГД генераторы

Last updated 4 years ago

Was this helpful?

Щелочно-металлический термоэлектрический генератор представляет собой электрохимическое устройство для прямого преобразования тепла в электрическую энергию. Он использует циркуляцию рабочей жидкости из щелочного металла (калия или натрия) через твёрдый электролит в закрытом контуре для создания потока электронов во внешней цепи.

Щелочно-металлические термоэлектрические генераторы основаны на уникальных свойствах некоторых твёрдых керамических электролитов, таких как β−\beta-β− или P−P-P− оксид алюминия, из-за свойств кристаллической решётки, хорошо проводят ионы, но очень плохо проводят электроны.

Рабочая жидкость движется в закрытом между источником нагрева и охлаждения, находясь между ними, находясь в состоянии пара в цикле, совершает работу в результате рабочего пара, проходящего через электролит, преобразуемую в электрическую энергию.

Принцип работы щелочно-металлического термоэлектрического преобразователя

Диаграмма ниже показывает основные компоненты системы.

Термодинамический цикл работает следующим образом:

  • Твёрдый электролит базы является проводником для ионов, но диэлектриком для электронов, расположенных в натриевой рабочей цепи, и на его обеих сторонах поддерживается разность температур

  • Тепло поступает к анодной стороне, увеличивая температуру до 1000K, вызывая его испарение и увеличение давления до 20 кПа

  • На холодной стороне устройства тепло отводится и температура падает до 700K и давление снижается до менее чем 100 Па. Несмотря на то, что эта сторона называется «холодной», температура остаётся относительно высокой для того, чтобы поддерживать натрий в жидком состоянии

  • На холодной стороне пар освобождает дополнительное тепло парообразования и конденсируется в жидкий натрий, который транспортируется к горячей стороне электромагнитным насосом, или, в малых системах, простым пассивным стоком

  • На горячей стороне натрий испаряется снова и цикл повторяется

Выходное напряжение между электродами составляет 1,4-1,6 В постоянного тока.

Система не имеет движущихся частей и может генерировать электричество пока тепло поступает и сохраняется разность температур на сторонах базы.

Эффективность

1−TcTh\frac{1 - T_{c}}{T_{h}}Th​1−Tc​​

где ThT_{h}Th​ - температура горячей стороны устройства, а TcT_{c}Tc​ — температура холодной стороны устройства. В приведённом примере она составляет

1−7001000=0,30,\frac{1 - 700}{1000} = 0,30,10001−700​=0,30,

хотя возможны значения до 0,40 при больших рабочих температурах.

На анодной поверхности базы нейтральные атомы натрия в виде пара освобождают электроны ( - процесс потери атомом электронов). В результате натриевые ионы поглощают дополнительное тепло парообразования

Из за наличия разности давлений с обеих сторон базы и различной проводимости электронов и ионов, положительные ионы натрия проходят через базу к катоду, в то время как электроды обеспечивают путь для свободных электронов для прохождения через внешнюю нагрузку, совершшая полезную работу на пути к катоду, где они рекомбинируются с ионами натрия для образования нейтрального пара металлического натрия ( - процесс получения электронов ионом)

Цикл, где натриевый пар нагревается и увеличивает давление, следующее расширение и падение давления через твёрдый электролит, и последующее охлаждение может быть рассмотрен как . Максимальный теортеический КПД (КПД цикла ) определяется как

На практике наибольший достигнутый коэффициент полезного действия, достигнутый при использовании щелочно-металлических термоэлектрических преобразователей, составляет 0,20, но он является достаточно высоким в сравнении с другим способом прямого преобразования с помощью , имеющих КПД в диапазоне от 0,05 до 0,07. Этот факт является очень важным для , которые используются в космических аппаратах, поскольку масса для такого термоэлектрического преобразователя для выработки аналогичного количества энергии должна быть в четыре раза меньше, чем аналогичного полупроводникового термоэлектрического преобразователя. Это приводит к уменьшению массы системы, экономии топлива и снижении цены.

В связи с тем, что щелочно-металлические термоэлектрические преобразователи не имеют движущихся частей и используют закрытый цикл преобразования, его общий коэффициент полезного действия лучше, чем у паровых турбин и двигателей внутреннего сгорания, имеющих значительные потери преобразования, потери на трение и перекачку рабочих жидкостей. Эффективность всех этих систем снижается из-за наличия потерь, но паровые турбины и ДВС должны работать при более высокой разности температур для компенсации дополнительных потерь и достижения эффективности цикла Карно. Смотрите так же .

Карно
тепловой двигатель
Карно
эффективность тепловых двигателей
История
термодинамическом цикле
изотермического расширения
полупроводниковых термопреобразователей
радиоизотопных термоэлектрических генераторов
окисление
восстановление